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A N A L Y S I S  O F  S T A B I L I T Y  O F  A T H I N  L A Y E R  O F  G R A N U L A R  

M A T E R I A L  M O V I N G  O N  A N  I N C L I N E D  P L A N E  

Yu. A.  Berez in  and L. A.  Spodareva  UDC 532.536 

The stability of  a layer of  a granular medium on an inclined plane has been studied within 
the framework of  the model of  a non-Newtonian f luid with an index of  Y2, which ensures the 
experimentally found quadratic dependence of  the shear stress on the shear rate. It is shown 
analytically and numerically that these flows are stable or unstable depending on the value of  
the generalized Reynolds number relative to the critical value equal to 5 cot a. 

Interest in the laws of motion of granular media stems from their abundance in nature and various 
technological processes [1, 2]. It is well known that the shear stress in rapid granular shear flows is proportional 
to the shear rate squared, and granular materials are often considered as a non-Newtonian medium. 

In [3], we studied a two-dimensional flow of a layer of such a material with a free surface, which moves 
slowly on a rough inclined plane, based on the model of an incompressible non-Newtonian fluid with an index 
2. The assumption of slow motion corresponds to the neglect of inertial components in the equations of motion. 
The equation obtained for the free surface of the layer in case of small but finite amplitudes reduces to the 
Burgers equation whose solutions are stable to small perturbations within the entire range of wavelengths 
(or wavenumbers). For rapid flows, it is necessary to take into account the components of the equations of 
motion that correspond to flow acceleration, which can alter the character of stability. Exactly these issues 
are discussed in the present paper. 

As in [3], we use the governing equations 

p(ut + uu= + vu , )  = -p= + pg sin a + (az=)= + (rz,) , ,  
(1) 

pC,,, + u,,= + , , , , , )  = - p , ,  - pg cos + (r,,=)= + ( , , , , ) , ,  u= + , , ,  = o. 

The z axis is directed along the inclined plane and the y axis is directed across the plane. We assume that 
the longitudinal scale L0 is significantly greater than the transverse scale H0 (e = HolLo << 1). Then the 
transverse velocity v is significantly smaller than the longitudinal velocity u, but % --. uz (as follows from the 
continuity equation), and the pressure can be considered as hydrostatic. Since the flow is mainly longitudinal, 
we take into account only the shear stress component rffiy = r~= which is equal to/.tluy[uy , where/~ is the 
dynamic viscosity or a measure of the consistency of the medium. As a result, Eqs. (1) take the form 

ut + uu= + vuy  = - p = / p  + g sin a +  (lul u,)y, py = - p g  cos u= + = 0. (2) 

Here t, = / t / p  and H = H(x ,  t) is a function that describes the shape of the free surface. 
We supplement these equations by the boundary conditions u = v = 0 on the inclined plane for y = 0 

and p = 0, rzy = 0, and H, + uHz = v on the free surface of the layer for y = H ( z ,  t). Since the shear stress 
is rzy, the equality of this shear stress to zero on the free surface is equivalent to the equality uv = 0 for 
y = H ( z ,  t).  
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To analyze sys tem (2), we use a common procedure of transition to equations integrated over the 
thickness of the layer under  consideration, which is described in detail, for instance, by Nakoryakov et al. [4] 
for a viscous Newtonian fluid. Appropriate transformations using the above boundary conditions lead to 

gt + (g(u))x = 0, (3) 
(g(u))~ + (g(u2))z  = g g ( s i n  c~-  gx  cos a ) -  vu2u(O), 

where 
H H 

dy. 
0 0 

Now we have to find a relationship between the mean longitudinal velocity and its mean square. We use a 
steaxiy-state-type profile as an approximation, i.e., 

u ( x ,  y ,  t )  = u , [ 1  - ( l  - y l g )  3/2 ], u,  = (213) (gH 3 s in  a / v )  1/2,  

and find (u) = 3us/5 and (u 2) = 5(u)2/4. Substituting these relations into (3), we obtain the sought equations 

Ht -t- Qx = O, Qt -t- 5((u)Q)z/4 = - (g /2) (H2)z  cos a -t- g g  sin a - 25vQ2/(4H4). (4) 

H 

Q = / u d y  = (u)H is the volume discharge. Here 
0 

On the basis of Eqs. (4), we analyze the stability of a uniform flow H = H0, Q = Q0 = 
(2/5)(gH~ sin a/u)  1/2, and uo = Qo/Ho to infinitesimal periodic perturbations.  For this we write H = H0 -t-h, 
Q = Q0 + q (h << H0, q << Q0), represent the perturbations as q, h ,,~ exp i (kx  - wt), where w = wr + i7 is the 
complex frequency, and use the  condition of solvability of the system of algebraic equations for perturbation 
amplitudes. As a result,  we obtain a dispersion equation that  relates the frequency and the wavenumber k. 
In dimensionless variables this equation has the form 

o,2 _ ( 5 / 2 ) ( k  - bile Re)o, + ( 5 / 4 ) ( 1  - 5 c o t   /Re)k - 125 i k / ( 4 e  Re) = 0. (5) 

The  scales of frequency and wavenumber are uo/Lo and l /L0 ,  respectively, and Re = H~/v  is an analog of 
the  Reynolds number  for the  med ium considered. In a long-wave approximation (k << 1), the solutions of Eq. 
(5) can be found analytically. Indeed, substi tut ing the frequency in the form of an expansion with respect to 
the wavenumber powers w = o,o + ko,1 4- k2w2 and equating separately the terms with equal powers of k to 
zero, we obtain 

o,O) = 5k/2  § 0. l ie (Re - 5 cot a )k  2, o,(2) = - i [12 .5 / (e  Re) + 0.1e(Re - 5 cot a)k2]. 

The  complex frequency of the first harmonic has a nonzero real part  proportional to the wavenumber 
and an imaginary par t  proport ional  to the  wavenumber squared. The  sign of the imaginary part depends on 
the Reynolds number:  the  growth rate of the first harmonic is 3, (1) ,-, i R e -  Re*) k2 > 0 for Re > Re. = 5 cot a 
and 3,0) < 0 for Re < Re. .  

The  complex frequency of the second harmonic has a zero real part and a negative imaginary part. 
Thus, in the long-wave range the first harmonic propagates with the phase velocity w(1)/k = 5//2 and is 
unstable (stable) for Re > Re. (Re < Re.) ,  and the second harmonic does not propagate and decays (is 
stable). 

For arbitrary wavenumbers  of perturbations,  having separated the real and imaginary parts of the 
complex frequency, we obta in  from Eq. (5) 

2.5(~' -t- a)k 12.5 k2 0.83'(7 + a)(27 + a) 2 
, a ~ ~ , 

o,r 23' + a ~ Re (1 - 5 Re -1 cot a)(27 + a) 2 - 53'(3' + a)" 

In the limit, as k ---* 0, the growth rates are 3, (1) ---, 0 and 3,(2) ._, -12 .5 / (~Re) .  For very short waves 
the limiting values of the  growth rate 3,1 and the decrement 3,2 can be determined by equating to z~ro the 
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denominator of the expression k2(7). For example, for e = 0.1 and a = 45 ~ we have 

71 = (62.5/Re)(k/5 Re/(Re + 2 0 ) -  1), 72 = -(62.5/Re)(x/5 Re/(Re + 20 )+  1). 

For small deviations of the Reynolds number from the critical value, the growth rate of the first harmonic is 
( R e -  Re.)k 2. It increases monotonically from zero to 71 with increasing wavenumber, and the growth rate 
of the second harmonic varies monotonically from 7 (2) = -12.5/(e Re) to -},2. 

We consider a weakly nonlinear case. This means that substituting H = H0 + h and Q = Q0 + q into 
Eqs. (4) we retain, along with linear terms, the quadratic ones with respect to perturbations q and h. As a 
result, we obtain 

ht + qx = O, 

[ 5Qo '~ z ( 5Q02 '~ h 25002 { q 2h 
qt+ t'~'ooJq - \4H~] z - g ( h s i n c t -  Hoh:~cosa) + 2H0-----~Rek.~- ~ H00) 

5Qo (q_  h 5Q02 h 25q02 q2 8qh 10h2~ 

- Voo) (co + ,,o' : 
We differentiate the first equation with respect to time t and the second equation with respect to the 

x coordinate and obtain the equation 

2H02 Re [h. + coh.t + (0.2 4 - gg0 cos ~ ) h =  l ht + co-oh. + 25Q-----~ 

2Ho2Re 25 
-- -- qq,-- (qh),+ 25qo ~ (qh),,,, + ~2H~ + g cos + ~ -~o 
where co =- 5Qo[2Ho = (5/2)u0. 

We suppose the nonlinearity to be small; therefore, we can assume that q = coh in nonlinear terms, 
and then we have 

(3co "~hh. (HoRe) c,O'~ 0 c20"~h = c o t s \  hh 

Here cI,2 = (c0/2)(I 4- 3/1/5 + 4 cot a/I~ ). Substituting 0/~ ~ -coO/Oz in terms with mixed derivatives, 
which does not change the order of accuracy, we obtain the equation 

+ , , , .  + + ( , -   co, = .'2~ + co, ) 
The last term in the left-hand side corresponds to positive or "negative" viscosity depending on whether 

the Reynolds number is smaller or greater than Re, = 5 cot a. As in the linear case, the flow is unstable for 
high values Re > Re. and stable for small values Re < Re.. To study the nonlinear evolution of spatially 
localized initial perturbations, we numerically solved Eels. (3), which have the dimensionless form 

Ht + Qz = O, Qt + (5/4)((u)Q)z = -(25cota/4Re)gHt + (25/4~Re)(H -- Q2[H4). 

The solution was obtained using an explicit conditionally stable scheme and taking into account 
the sign of the averaged longitudinal velocity. The mass and momentum fluxes are approximated by one- 
sided differences, and the pressure gradient is approximated by central differences. For simplicity, the initial 
perturbation was a triangle of height//1 = 0.1 and base width A = 2 in dimensionless units. At the initial 
moment of time this triangle, located on a uniform layer with an undisturbed surface H = 1, suddenly becomes 
free, and the perturbation, changing in shape, starts to move along the layer. The calculations were conducted 
for ~ = 0.1 and a = 45 ~ 

Figure 1 shows profiles of elevation of the free surface of a granular layer as functions of the coordinate 
along the inclined plane at different times and for different Reynolds numbers: 

(a) for the Reynolds number smaller than the critical value Re = 4 (according to the linear analysis, 
the critical value is Re. = 5 for ~ = 45~ the initial perturbation propagates downstream with a noticeable 
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decrease in the amplitude and an increase in the width; 
(b) Re = 6, the initial elevation loses its symmetric shape in time, and a saw-tooth profile arises; 
(c) the change in the initial profile begins in earlier stages of evolution (Re = 10). 
Thus, for a layer of a dry granular material considered as a non-Newtonian fluid with an index of 2 

that moves on a rough inclined plane, we derived equations for the free-surface shape and the longitudinal 
momentum which are averaged over the depth of this layer. Based on the linear analysis, it is shown that 
infinitesimal perturbations are stable (unstable) for Re < Re, (Re > Re,). For the case of weak nonlinearity 
the problem reduces to one equation for the free surface. Using a numerical solution, the evolution of initial 
perturbations of finite amplitude is considered for subcritical and supercritical Reynolds numbers. 
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